S4E－39A

聚賢教育 education

Student No．：	Date：	$/ 1$	score：
Student Name：			

Revision of Logarithmic Functions（I）

Bucreciacc

1．Evaluate the following and express the answers in exact value．
（a） $\log _{81} 243$
（b） $\log _{64} \frac{1}{4096}$
（c） $\log _{5} 25+5 \log _{2} 16$
（d）$\frac{1}{2} \log 16+2 \log 5+\log 10$
（e）$\frac{\log _{7} 216^{-1}}{\log _{7} 1296}$
（f） $\log _{2} \sqrt{128}+\log _{3} 135-\frac{1}{2} \log _{2} 64-\log _{3} 5$

S4E-39A

2. Simplify the following expressions where $x>0, y>0$ and $x \neq 1$.
(a) $\frac{\log _{4} x^{3}}{\log _{4} x \sqrt{x^{3}}}$
(b) $\frac{\log _{\frac{1}{3}} \sqrt[4]{y^{3}}-\log _{\frac{1}{3}} y^{5}}{\log _{\frac{1}{3}} y^{2}}$
(c) $\log _{2} 16 x+\log _{2} 3 x^{4}-\log _{2} 192 x^{5}$
(d) $\log _{x} \sqrt{x}-2 \log _{x} \sqrt[5]{x}+\log _{x} \sqrt[3]{x^{4}}$
3. Given that $\log 5=x$ and $\log 6=y$, express $\log \frac{1}{15}$ in terms of x and y.

4. Given that $\log 4=x$ and $\log 24=y$, express $\log 3$ in terms of x and y.
5. Simplify the following expressions $x>0, y>0$ and $x \neq 1$.
(a) $\frac{\frac{1}{2} \log 256+2 \log x^{2}+8 \log y}{\log (2 x)+4 \log \sqrt{y}}$
(b) $\frac{\log _{x} y^{3}-\log _{x} \sqrt{y}}{\log _{x} \sqrt[3]{y}+\log _{x} y}$
(c) $\left(\log _{x} y^{2}\right)\left(\log _{y} \sqrt{x}\right)$
6. Solve the following equations. (Give the answers correct to 3 significant figures if necessary.)
(a) $4^{x} \cdot 5^{x}=7$
(b) $3^{x}=4^{x-3}$

(c) $\quad \log (3 x-3)=-3$
(d) $4 \log 4-\log x=\log 32$

S4E-39A

(e) $\quad \log _{5}(7 x+13)-\log _{5}(x+1)=2$
(f) $\quad \log _{7}(2 x+1)+\log _{7}(3 x-2)=2 \log _{7} 5$
7. According to the given graph, sketch the required graph of $y=\log _{0.7} x$ on the same rectangular coordinate plane.

8. The following are the measurements of the sound of two clips of thunder:

The intensity of the sound for the first clap of thunder was 1.2 units, and the loudness of the sound for the second clap of thunder is 125 dB , which one is louder?
[The relation between the loudness D (in dB) of a sound and its intensity (I units) can be expressed as

$$
\left.D=10 \log \left(10^{12} I\right) .\right]
$$

© 2020 Gsmart Education. All right reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior permission of Gsmart Education.

